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—— Abstract

A valid edge-coloring of a graph is an assignment of “colors” to its edges such that no two incident
edges receive the same color. The goal is to find a proper coloring that uses few colors. (Note that
the maximum degree, A, is a trivial lower bound.) In this paper, we revisit this fundamental problem
in two models of computation specific to massive graphs, the Massively Parallel Computations (MPC)
model and the Graph Streaming model:

Massively Parallel Computation. We give a randomized MPC algorithm that with high probability
returns a A + 5(A3/4) edge coloring in O(1) rounds using O(n) space per machine and O(m)
total space. The space per machine can also be further improved to n*~¥® if A = %™, Our
algorithm improves upon a previous result of Harvey et al. [SPAA 2018].

Graph Streaming. Since the output of edge-coloring is as large as its input, we consider a standard
variant of the streaming model where the output is also reported in a streaming fashion. The
main challenge is that the algorithm cannot “remember” all the reported edge colors, yet has to
output a proper edge coloring using few colors.

We give a one-pass 5(n)-space streaming algorithm that always returns a valid coloring and
uses 5.44A colors with high probability if the edges arrive in a random order. For adversarial
order streams, we give another one-pass 6(n)-space algorithm that requires O(A?) colors.
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Streaming and Massively Parallel Algorithms for Edge Coloring

1 Introduction

Given a graph G(V, E), an edge coloring of G is an assignment of “colors” to the edges in F
such that no two incident edges receive the same color. The goal is to find an edge coloring
that uses few colors. Edge coloring is among the most fundamental graph problems and has
been studied in various models of computation, especially in distributed and parallel settings.

Denoting the maximum degree in the graph by A, it is easy to see that A colors are
necessary in any proper edge coloring. On the other hand, Vizing’s celebrated theorem
asserts that A + 1 colors are always sufficient [39]. While determining whether a graph
can be A colored is NP-hard, a A 4+ 1 coloring can be found in polynomial time [5, 21].
These algorithms are, however, highly sequential. As a result, in restricted settings, it is
standard to consider more relaxed variants of the problem where more colors are allowed
[2, 8, 20, 24, 25, 27, 29, 32, 34, 35, 36].

In this paper, we study edge coloring in large-scale graph settings. Specifically, we focus
on the Massively Parallel Computations (MPC) model and the Graph Streaming model.

1.1 Massively Parallel Computation

The Model. The MPC model [10, 26, 31] is a popular abstraction of modern parallel
frameworks such as MapReduce, Hadoop, Spark, etc. In this model, there are N machines,
each with a space of S words® that all run in parallel. The input, which in our case is the
edge-set of graph G(V, F), is initially distributed among the machines arbitrarily. Afterwards,
the system proceeds in synchronous rounds wherein the machines can perform any arbitrary
local computation on their data and can also send messages to other machines. The messages
are then delivered at the start of the next round so long as the total messages sent and
received by each machine is O(S) for local machine space S. The main parameters of interest
are S and the round-complexity of the algorithm, i.e., the number of rounds it takes until
the algorithm stops. Furthermore, the total available space over all machines should ideally
be linear in the input size, i.e., S - N = O(|E|).

Related Work in MPC. We have seen a plethora of results on graph problems ever since
the formalization of MPC. The studied problems include matching and vertex cover [1, 6, 14,
17, 22, 33, 12, 15], maximal independent set [22, 28, 12, 15], vertex coloring [7, 16, 28, 37, 38],
as well as graph connectivity and related problems [3, 4, 13, 30, 9]. (This is by no means a
complete list of the prior works.)

We have a good understanding of the complexity of vertex coloring in the MPC model,
especially if the local space is near linear in n: Assadi et al. [7] gave a remarkable algorithm
that using O(n) space per machine, finds a (A + 1) vertex coloring in a constant number of
rounds. The algorithm is based on a sparsification idea that reduces the number of edges
from m to O(nlog? n). But this algorithm alone cannot be used for coloring the edges, even
if we consider the more relaxed (2A — 1) edge coloring problem which is equivalent to (A +1)
vertex coloring on the line graph. The reason is that the line-graph has O(m) vertices where
here m is the number of edges in the original graph. Therefore even after the sparisification
step, we have 5(m) vertices in the graph which is much larger than the local space available
in the machines.

! Throughout the paper, the stated space bounds are in the number of words that each denotes O(logn)
bits.
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Not much work has been done on the edge coloring problem in the MPC model. The only
exception is the algorithm of Harvey et al. [28] which roughly works by random partitioning
the edges, and then coloring each partition in a different machine using a sequential (A + 1)
edge coloring algorithm. The choice of the number of partitions leads to a trade-off between
the number of colors used and the space per machine required. The main shortcoming of
this idea, however, is that if one desires a A + 6(A1_Q(1)) edge coloring, then a strongly
super linear local space of nA2(!) is required.

Our main MPC result is the following algorithm which uses a more efficient partitioning.
The key difference is that we use a vertexr partitioning as opposed to the algorithm of Harvey
et al. which partitions the edges.

> Result 1 (Theorem 1). There exists an MPC algorithm that using O(n) space per
machine and O(m) total space, returns a A + O(A%/4) edge coloring in O(1) rounds.

The algorithm exhibits a tradeoff between the space and the number of colors (see
Theorem 1) and can be made more space-efficient as the maximum degree gets larger. For
instance, if A > n¢ for any constant e > 0, it requires a strictly sublinear space of n!~%1)
to return a A + o(A) edge coloring in O(1) rounds. This is somewhat surprising since all

previous non-trivial algorithms in the strictly sublinear regime of MPC require w(1) rounds.

Our algorithm can also be implemented in O(1) rounds of Congested Clique, leading to a
A 4 O(A3/*) edge coloring there. Prior to our work, no sublogarithmic round Congested
Clique algorithm was known even for (2A — 1) edge coloring,.

1.2 Streaming

The Model. In the standard graph streaming model, the edges of a graph arrive one by
one and the algorithm has a space that is much smaller than the total number of edges. A
particularly important choice of space is O(n)—which is also known as the semi-streaming

model [19]—so that the algorithm has enough space to store the vertices but not the edges.

For edge coloring, the output is as large as the input, thus, we cannot hope to be able to
store the output and report it in bulk at the end. For this, we consider a standard twist on
the streaming model where the output is also reported in a streaming fashion. This model is
referred to in the literature as the “W-streaming” model [18, 23]. We particularly focus on
one-pass algorithms.

Designing one-pass W-streaming algorithms is particularly challenging since the algorithm
cannot “remember” all the choices made so far (e.g., the reported edge colors). Therefore,
even the sequential greedy algorithm for (2A — 1) edge coloring, which iterates over the
edges in an arbitrary order an assigns an available to each color upon visiting it, cannot be
implemented since we are not aware of the colors used incident to an edge.

Our first result is to show that a natural algorithm w.h.p.? provides an O(A) edge
coloring if the edges arrive in a random-order.

> Result 2 (Theorem 9). If the edges arrive in a random-order, there is a one-pass O(n)
space W-streaming edge coloring algorithm that always returns a valid edge coloring and
w.h.p. uses (2e + o(1))A ~ 5.44A colors.

2 Throughout, we use “w.h.p” to abbreviate “with high probability” implying probability at least
1 —1/poly(n).
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If the edges arrive in an arbitrary order, we give another algorithm that requires more
colors.

> Result 3 (Theorem 10). For any arbitrary arrival of edges, there is a one-pass O(n)
space W-streaming edge coloring algorithm that succeeds w.h.p. and uses O(A?) colors.

These are, to our knowledge, the first streaming algorithms for edge coloring.

2 The MPC Algorithm

In this section, we consider the edge coloring problem in the MPC model. Our main result in
this section is an algorithm that achieves the following:

» Theorem 1. For any parameter k (possibly dependent on A) such that n/k > logn, there
exists an MPC algorithm with O(25 + %+/Alogn/k) space per machine and O(m) total
space that w.h.p. returns a A+ O(y/kAlogn) edge coloring in O(1) rounds.

By setting k = VA + logn, the space required per machine will be O(n) and the number
of colors would be A + O(A%/*). Using a reduction from [11], this also leads to an O(1)
round Congested Clique algorithm using the same number of colors.

» Corollary 2. There exists a randomized MPC algorithm with O(n) local space, as well as
a Congested Clique algorithm, that both w.h.p. find a A + O(A3/*) edge coloring in O(1)
rounds.

Moreover, assuming that A = n®*()_ by setting k = A%5*¢ for a small enough constant
e € (0,1), we get the following O(1) round algorithm which requires nt=2M machine space,
which is notably strictly sublinear in n:

» Corollary 3. If A = n®*M) | there exists a randomized MPC algorithm with O(n/A%) =
n' =) space per machine and O(m) total space that w.h.p. returns a A+ O(A%75+¢/2) edge
coloring in O(1) rounds.

The Idea Behind the Algorithm. The first step in the algorithm is a random partitioning
of the vertex set into k groups, V1, ..., Vi. We then introduce one subgraph for each vertex
subset, called G,...,Gy, and one subgraph for every pair of groups which we denote as
Gi2,...,G1k,...,Gr_1%. Any such G, is simply the induced subgraph of G on V;. Moreover,
any such Gj; ; is the subgraph on vertices V; U V;, with edges with one point in V; and the
other in Vj.

The general idea is to assign different palettes, i.e., subsets of colors, to different subgraphs
so that the palettes assigned to any two neighboring subgraphs (i.e., those that share a
vertex) are completely disjoint. A key insight to prevent this from blowing up the number of
colors, is that since any two edges from G; ; and Gy j» with i # i’ and j # j' cannot share
endpoints by definition, it is safe to use the same color palette for them.

To assign these color palettes, we consider a complete k-vertex graph with each vertex v;
in it corresponding to partition V; and each edge (v;, v;) in it corresponding to the subgraph
G; ;. We then find a k edge coloring of this complete graph, which exists by Vizing’s theorem
since maximum degree in it is k — 1. This edge coloring can actually be constructed extremely
efficiently using merely the edges’ endpoint IDs. Thereafter, we map each of these k colors to
a color palette. By carefully choosing k£ and the number of colors in each palette, we ensure
that: (1) The total number of colors required is close to A. (2) Each subgraph G; ; can be



S. Behnezhad, M. Derakhshan, M.T. Hajiaghayi, M. Knittel, H. Saleh

properly edge-colored with those colors in its palette. (3) Each subgraph fits the memory of
a single machine so that we can put it in whole there and run the sequential edge coloring
algorithm on it.

Algorithm 1: An MPC algorithm for edge coloring.

Parameter: k.;
Output: An edge coloring of a given graph G = (V, E) with maximum degree A
using ¥ := A + d+/kAlogn colors for some large enough constant d.
Independently and u.a.r. partition V into k subsets Vi,..., Vi.;
For every i € [k], let G; be the induced subgraph of G on V;.;
For every i, j € [k] with ¢ # j, let G; ; be the subgraph of G including an edge e € E
iff one end-point of e is in V; and the other is in V}.;
Partition [¥] into & + 1 disjoint subsets C1, ..., Ck, C’, which we call color palettes, in
an arbitrarily way such that each palette has exactly Til colors.;
for each graph G; in parallel do
‘ Color G; sequentially in a single machine with palette C".;
end
// In what follows, we implicitly construct a k edge coloring of a complete k-vertex
graph K} and assign palette C,, to subgraph G; ; where « is the color of edge
(i,7) in K.
for each graph G;; in parallel do
Color G; ; sequentially in a machine with palette C, where

a=((i+7) mod k) + 1
end

The algorithm outlined above is formalized as Algorithm 1. We start by proving certain
bounds on subgraphs’ size and degrees.

> Claim 4. W.h.p., every subgraph of type G; or G; ; has maximum degree %—Q—O(w /Alog %)
and has at most O(4%5 + 2+/Alogn/k) edges.

Proof. Let us start with bounding the degree of an arbitrary vertex v € V; in subgraph Gj;.

The degree of vertex v in G; is precisely the number of its neighbors that are assigned to

partition V;. Since there are k partitions, the expected degree of v in G; is deg (v)/k < A/k.

Furthermore, since the assignment of vertices to the partitions is done independently and
uniformly at random, by a simple application of Chernoff bound, v’s degree in G; should be
highly concentrated around its mean. Namely, with probability at least 1 — n~2, it holds
that degg, (v) < £ + O(y/Alogn/k). Now, a union bound over the n vertices in the graph,
proves that the degree of all vertices in their partitions should be at most % +O0(y/Alogn/k)
with probability 1 — 1/n.

Bounding vertex degrees in subgraphs of type G ; also follows from essentially the same
argument. The only difference is that we have to union bound over n - k choices, as we

would like to bound the degree of any vertex v with say v € V; in k subgraphs G; 1,...,G; k.

Nonetheless, since k < n, there are still poly(n) many choices to union bound over. Thus, by
changing the constants in the lower terms of the concentration bound, we can achieve the
same high probability result.

Finally, we focus on the number of edges in each of the subgraphs. Each partition V; has
n/k vertices in expectation since the n vertices are partitioned into k groups independently
and uniformly at random. A simple application of Chernoff and union bounds, implies that
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the number of vertices in each partition V; is at most O(%) w.h.p., so long as n/k > logn,
which is the case. Since the number of edges in each partition is less than the number of
vertices times max degree, combined with the aforementioned bounds on the max degree, we
can bound the number of edges in G; and G; ; for any 7 and j by

n A [A nA n A

which is the claimed bound. |

Next, observe that we use palettes Cy, ..., Ck11,C’, each of size k—f’rl to color the subgraphs.
We need to argue that the maximum degree in each subgraph is at most ki“ — 1 to be able
to argue that using Vizing’s theorem in one machine, we can color any of the subgraphs with

the assigned palettes. This can indeed be easily guaranteed if the constant d is large enough:

» Observation 5. If constant d in Algorithm 1 is large enough, then maximum degree of
every graph is at most k%_l —1, w.h.p.

Proof. We have ¥ = A 4+ dy/kAlogn in Algorithm 1, therefore:

v A dyEAL A
- 98T _ 2 4 o(/Alogn/k),
k+1 k+l k+1 k

where the hidden constants in the second term of the last equation can be made arbitrarily
large depending on the choice of constant d. On the other hand, recall from Claim 4 that
the maximum degree in any of the subgraphs is also at most % + O(y/Alogn/k). Thus, the
palette sizes are sufficient to color the subgraphs if d is a large enough constant. <

We are now ready to prove the algorithm’s correctness.

» Lemma 6. Algorithm 1 returns a proper edge coloring of G using A + O(y/kAlogn)
colors.

Proof. The algorithm clearly uses ¥ = A + O(y/kAlogn) colors, it remains to argue that
the returned edge coloring is proper. Each subgraph (of type G; or G ;) is sent to a single
machine and edge-colored there using the palette that it is assigned to. Since by Observation 5,
each palette has at least A’ + 1 colors for A’ being the max degree in the subgraphs, there
will be no conflicts in the colors associated to the edges within a partition. We only need to
argue that two edges e and f sharing a vertex v that belong to two different subgraphs are
not assigned the same color. Note that all subgraphs of type G; are vertex disjoint and all
receive the special color palette C’, thus there cannot be any conflict there. To complete the
proof, it suffices to prove that any two subgraphs G; ; and Gy ; that share a vertex receive
different palettes. Note that in this case, either i =i’ or j = 5’ by the partitioning. Assume
w.l.o.g. that i =4’ and thus j # j’. Based on Algorithm 1 for G; ; and Gy j to be assigned
the same color palette, it should hold that

((i 4 j) mod k) +1 = ((i' 4+ j') mod k) + 1.

Since ¢ = ¢’, this would imply that (j mod k) = (' mod k), though this would not be possible
given that both j and j' are in [k] and that j # j/. Therefore, any two subgraphs that share
a vertex receive different palettes and thus there cannot be any conflicts, completing the
proof. |
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Next, we turn to prove the space bounds.

» Lemma 7 (Implementation and Space Complexity). Algorithm 1 can be implemented with
total space O(m) and space per machine of O(28 + 2+/Alogn/k) w.h.p.

Proof. We start with an implementation that uses the specified space per machine but can
be wasteful in terms of the total space, then describe how we can overcome this problem and
also achieve an optimal total space of O(m).

We can use k + (’2“) machines, each with a space of size O(% + 7/ Alogn/k) to assign
colors to the edges in parallel. The first mq, ..., my machines will be used for edge coloring

on G1,Ga,...,Gy, respectively. The other myy1,... STy (5 machines will be used for edge
2

coloring on the G;; graphs. Lemma 4 already guarantees that each subgraph has size
O(% + #+y/Alogn/k) w.h.p., and thus fits the memory of a single machine.

In the implementation discussed above, since the machines use O(nA/k2) space and there

are O(k?) machines, the total memory can be O(nA) which may be much larger than O(m).

This is because we allocate O(nA/k?) space to each machine regardless of how much data it
actually received. Though, observe that each edge of the graph belongs to exactly one of
the subgraphs, i.e., the machines together only handle a total of O(m) data. So we must
consolidate into fewer machines. We do this by putting multiple subgraphs in each machine.

We start by recalling a sorting primitive in the MPC model which was proved in [26].

Basically, if there are N items to be sorted and the space per machine is N*(!)| then the
algorithm of [26] sorts these items into the machines within O(1) rounds. To use this
primitive, we first label each edge e = (u, v) of the graph by its subgraph name (e.g. G; or
Gi,j) which can be determined solely based on the end-points of the edge. After that, we
sort the edges based on these labels. This way, all the edges inside each subgraph can be sent
to the same machine within O(1) rounds while also ensuring that the total required space
remains O(m). <

The algorithm for Theorem 1 was formalized as Algorithm 1. We showed in Lemma 6
that the algorithm correctly finds an edge coloring of the graph with the claimed number of
colors. We also showed in Lemma 7 that the algorithm can be implemented with O(m) total

space and O(% + #+/Alogn/k) space per machine. This completes the proof of Theorem 1.

3 Streaming Algorithms

We start in Section 3.1 by describing our streaming algorithm and its analysis when the
arrival order is random. Then in Section 3.2, we give another algorithm for adversarial order
streams.

3.1 Random Edge Arrival Setting

In this section, we give a streaming algorithm for O(A) edge coloring using é(n) space
where the edges come in a random stream. That is, a permutation over the edges is chosen
uniformly at random and then the edges arrive according to this permutation.

We first note that if A = O(logn) then the problem is trivial as we can store the whole
graph and then report a A + 1 edge coloring (even without knowledge of A). As such, we
assume A = w(logn).

The algorithm — formalized as Algorithm 2 — maintains a counter ¢, for each vertex v.

At any point during the algorithm, this counter ¢, basically denotes the highest color number
used for the edges incident to v so far, plus 1. Therefore, upon arrival of an edge (u,v), it is

14:7

ESA 2019



14:8

Streaming and Massively Parallel Algorithms for Edge Coloring

safe to color this edge with max(c,, ¢,) as all edges incident to u and v have a color that is
strictly smaller than this. Then, we increase the counters of both v and u to max(c,, ¢,) + 1.
It is not hard to see that the solution is always a valid coloring, in the remainder of this
section, we mainly focus on the number of colors required by this algorithm and show that
w.h.p., it is only O(A) for random arrivals.

Algorithm 2: Edge coloring for random streams.

Result: A feasible coloring C : E — [¥] for a given graph G = (V, E) with maximum
degree A in a random stream
Cy — 0 YvevV,
while (u,v) is read from stream do
C(u,v) < max(cy, ¢y);
Cusy Cy — Clu,v) + 1;
end

We start by noting that this algorithm can actually be extremely bad if the order is
adversarial. To see this, consider a path of size n. In an adversarial stream where the edges
arrive in the order of the path, Algorithm 2 uses as many as n — 1 colors while the maximum
degree is only 2! It is easy to see why this example is very unlikely to occur in random order
streams: For a fixed path, it is very unlikely that the edges are randomly ordered in this
very specific way.

To make this intuition rigorous for general graphs, we first prove the following crucial
lemma which gives us the correct parameter to bound.

» Lemma 8. Let U be the size of the longest monotone (in the order of arrival) path in the
line-graph of G. Then Algorithm 2 uses exactly ¥ colors.

Proof. Take a monotone path vy, vs,..., vy in the line-graph of G and let ey, es,...,eqy be
the edges of the original graph that correspond to these vertices respectively, i.e., e arrives
before e; which arrives before e3 and so on. Since for any ¢, v; and v;11 are neighbors in the
line-graph, then e; and e;;; should share an end-point v. This means that at the time of
arrival of e;+1, we have ¢, > C(e;) + 1 which in turn, implies C(ey) > C(ewy—1) > ... > C(ey).
Therefore, C(ey) > 0.

On the other hand, suppose that there is an edge e; = (u,v) for which C(e;) = ¥ in
Algorithm 2. This means that at least one of ¢, or ¢, equals ¥ when e; arrives, say c,
w.l.o.g. Let e2 be the last edge incident to u that has arrived before e;. It should hold that
C(e2) = ¥ — 1. Using the same argument, for each 1 < ¢ < ¥, we can find a neighboring

edge e; such that C(e;) = C(e;—1) — 1. This way, we end up with a sequence eq,...,ey of
edges, the path corresponding to this sequence in the line graph will be a monotone path of
length ¥, completing the proof. <

» Theorem 9. There is a streaming edge coloring algorithm that for any graph G = (V, E)
uses at most (2e + €)A = 5.44A colors w.h.p. for any constant € > 0 given that the edges in
E arrive in a random order.

Proof. We first prove that Algorithm 2 gives us a feasible coloring of graph G. Consider two
edges e; = (u,v) and e3 = (u,v’) incident to vertex u such that e; appears earlier than ey in
the stream. For any edge e we represent by C(e) the color assigned to that by the algorithm.
After the algorithm colors e; with C(ey), it sets ¢, to C(e1) + 1. Thus, ¢, is at least C(e1) + 1
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when eq arrives and C(e2) > C(e1) + 1 consequently. Therefore, C(ez) > C(e1) for any pair of
edges incident to a common vertex, and C is a feasible coloring.

Next, for some constant « that we fix later, we show that the probability that an edge is
assigned a color number at least aA is at most n~¢ for some constant ¢ > 2, implying via a
union bound over all the edges that indeed w.h.p., ¥ < aA.

We showed in Lemma 8 that if the number of colors ¥ used is a/, then there should
exist a monotone path in the line-graph with size at least aA. Let eg,ea,...,eqa be the
corresponding edges to this path. Thus, it suffices to bound the probability of this event.
Let II denote the set of all such paths in the line graph. For a specific path 7 € II, the
probability that it is monotone is 1/(aA)!. Call this event X,. On the other hand, we can
upper bound the number of such paths by (2A)*4 i.e., [TI| < (2A)*?. This follows from the
fact that each path should start from the corresponding vertex to e in the line-graph, and
that maximum degree in the line graph is 2A — 2 (which is the upper bound on the number
of neighboring edges to each edge). Thus:

(2A)QA

Pr[C(eg) > aA] = Pr| \/ Xq] < Z PriX,=1] < N

well mell

where the last inequality is obtained by replacing Pr[X, = 1] and |II| by the aforementioned
bounds. Taking the logarithm of each side of the inequality, we get

In(Pr[C(eg) > aA]) < aAIn(2A) — In((aA)!)

) =
) -

(
< aAln(2A) — (A +1/2) In(al) — aA) (1)
= aAln(2e/a) — 1/21In(aA) (2)
< aAln(2e/a). (3)

To obtain (1), we use Stirling’s approximation of factorials to lower-bound In((aA)!). Finally,
we rearranged terms to imply (2). By plugging in o = 2e(1 + ¢€), we get

In(Pr[C(eg) > 2e(1 + €)A]) < 2e(1 + e)Aln(l i 6)
= —2¢e(l+¢€)In(1+€)A

< —2¢(1+e)In(l+e) ¢

2e(l+¢€)In(l +¢€)

In(n) ()
= —cln(n)

Since A = w(log(n)), we have A > ¢’ In(n) for any constant ¢’. Inequality (4) follows from
setting ¢ = ¢/(2e(1+¢)In(1+¢€)) in A > ¢’ In(n), where ¢ is the constant for which we want
to show the probability is upper-bounded by n~¢. Hence,

Pr[C(eg) > 2e(1 4+ €)A] < n~°.

Thus, Algorithm 2 returns a feasible coloring of the input graph G using at most 2e(1 + €)A
colors, for any constant € > 0 w.h.p. if the edges arrive in a random order. |

To further evaluate the performance of Algorithm 2, we implemented and ran it for
cliques of different size. The result of this experiment is provided in Table 1. The numbers
are obtained by running the experiment 100 times and taking the average number of colors
used. As it can be observed from Table 1, for cliques of size 100 to 1000, the number of
colors used by the algorithm is in range [3.3A,3.9A] and it slightly increases by the size of
the graph. Our analysis, however, shows that it should never exceed 5.44A.
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Clique Size 100 200 300 400 500 600 700 800 900 1000
Colors Used | 3.363A | 3.563A | 3.665A | 3.717TA | 3.756A | 3.787A | 3.815A | 3.838A | 3.849A | 3.863A

Table 1 The number of colors used by Algorithm 2 on cliques averaged over 100 trials.

3.2 Adversarial Edge Arrival Setting

In this section, we turn to arbitrary (i.e., adversarial) arrivals of the edges. We assume that
the adversary is oblivious, i.e., the order of the edges is determined before the algorithm
starts to operate so that the adversary cannot abuse the random bits used by the algorithm.
Having this assumption, we give a randomized algorithm that w.h.p., outputs a valid edge
coloring of the graph using O(A?) colors while using O(n) space. The algorithm is formalized
as Algorithm 3. We note that this algorithm, as stated, requires knowledge of A. However
we later show that we can get rid of this assumption. Overall, we get the following result:

Algorithm 3: Edge coloring in the adversarial order
Result: A feasible coloring for a given graph G = (V, E') with maximum degree A

for any vertexv € V do
r, < a sequence of log(n) independent random bits.

for any i € [logn] do
‘ Cy,i £ 0

end

nd

or any edge e = (u,v) in the stream do
Let i be the smallest index for which 7, ; # 7.

if A27% > logn then
if r,; =1 then
| Assign color (cy.i,Cv,i,1) to €.

= 0

else

| Assign color (¢y,i, Cyyi,t) to €.
end
Increase both ¢, ; and ¢, ; by one.

else
| Store edge e.

end

end
Color the stored edges using a new set of colors.

» Theorem 10. Given a graph G with mazimum degree A, there exists a one pass streaming
algorithm, that outputs a valid edge coloring of the G using O(A?) colors w.h.p., using O(n)

memory.

Consider two vertices v and u and their string of random bits r,, and r, defined in the
algorihtm. Let d,, be the smallest index ¢ where r,; # r,;. Upon arrival of an edge
e = (u,v), we first find i := d, . If A27% > logn, we color the edge immediately. Otherwise,
we store it. We will show that all the stored edges fit in the memory thus after reading all
the stream we can color them with a palette of at most A + 1 new colors. In the algorithm,
for any vertex v and any i € [logn], we define a counter ¢, ;. If A2~ > logn for any edge
e, then we immediately assign e a color which is represented by a tuple (cy;, ¢yi,%). Then,
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we increase counters ¢, ; and ¢, ;. Note that we say two colors are the same if all three
elements of them are equal. We first show that this gives us a valid coloring, which means it
does not assign the same color to two edges adjacent to the same vertex. We use proof by
contradiction. Assume that our algorithm assigns the same color to edges e; = (u,v1) and
es = (u,v2) adjacent to vertex u. None of them can be from the stored edges since we color
them using a new palette. This means that dy ,, = dy.,. Let us denote it by ¢. Without

loss of generality, we assume that r, ; = 1 and that in the input stream e; arrives before es.

Note that the first element of the colors (which are tuples) assigned to these edges is the
value of counter ¢, ; when they arrive. However, the algorithm increases ¢, ; by one after
arrival of e; thus the colors assigned to e; and e; cannot be the same.

Now, it suffices to show that the total number of colors used by the algorithm is O(A?).
Given a vertex v, and a number [ € [logn] let us compute an upper-bound for counter ¢, ;.

Let N, be the set of neighbors of this vertex and let IV, ; be the set of neighbors like v where
dy = i. We know that ¢, ; = |N, |, thus given any vertex v and i € [log(n)], we need to
find a bound for |N, ;|. Given any edge e = (v, u) the probability of e being in set N, ; is 277

which means E[|N, ;|] = deg(v)2~" where deg(v) is the degree of vertex v in the input graph.

Using a simple application of the Chernoff bound, for any vertex v, we get:
; : 1
Pr||Ny,;| > deg(v)2™" + O(y/deg(v)2~" logn)} < —.
nC

Setting ¢ to be a large enough constant, one can use union bound and show that w.h.p., for
any vertex v and i € [logn] where deg(v)27* > logn, we have |N, ;| < O(deg(v)27%).
Having this, we conclude that for any i € [logn], where A2~ > logn, the number of
colors used by the algorithm whose third element is i is at most O(A%272%) since the first
and the second element of the color can get at most O(A2~%) different values. Therefore, the
i€llog ] A22_21) = O(A?). We
will also show that the stored edges fit in the memory and thus we can color them using

total number of colors used for any such ¢ is at most O( >

O(A) new colors. As a result the total number of colors used is O(A?).
To give an upper-bound for the number of stored edges we first show that the expected

number of stored edges for each vertex is O(logn). Let j := log(log‘n). Recall that we store

an edge (u,v) when A2~ % < logn. Thus the expected number of stored edges adjacent to
a single vertex v is at most

Z d,27" < Z A27F < Z log(n)2~ " = O(logn).

j<i<Llogn 7<i<Llogn j<i<Llogn

To get the last equation we use the fact that A277 < logn. By a similar argument that
we used above (using Chernoff and Union bounds), with a high probability the total number
of stored edges is O(nlogn) which can be stored in the memory. Therefore the proof of this
theorem is completed.

Knwoledge of A. As written, our algorithm depends on the knowledge of A because we
must check A27% > logn. We can get rid of this condition by keeping track of the degree
degf of a vertex in the subgraph H we have seen so far, and then computing the max degree
deg? . This only requires an additional O(n) space. Thereafter, instead of checking if
A27% > logn, we check if deg” . 27" > logn. Whenever deg?  increases, we iterate over
all stored edges and recompute whether or not deggm 2% > logn. If so, we color the edge
and remove it from the buffer, else we keep it. It is easy to see that this will not exceed the
space bounds because at any timestep, we can assume the input graph was H in the first
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place. Then its max degree is Ay = deggaz, and we can apply the same argument for the
space bounds as before, but using Ay instead of A. All other parts of the proof still hold.
Therefore our algorithm does not require knowledge of A.

Finally, we remark that if one allows more space, then one can modify Algorithm 3 to
use fewer number of colors. Though we focused only on the 6(71) memory regime.

4 Open Problems

We believe the most notable future direction is to improve the number of colors used in our
streaming algorithms. Specifically, our streaming algorithm for adversarial arrivals requires
O(A?) colors. A major open question is whether this can be improved to O(A) while also
keeping the memory near-linear in n. Also for random arrival streams, we showed that
Algorithm 2 achieves a 5.44A coloring and showed, experimentally, that it uses at least 3.86A
colors. A particularly interesting open question is whether there is an algorithm that uses
arbitrarily close to 2A colors using 6(11) space in random arrival streams.
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