
CS 7880: Algorithms for Big Data (Fall’22) Northeastern University

Lecture 17
November 8th, 2022

Instructor: Soheil Behnezhad Scribe: Dongyue Li

Disclaimer: These notes have not been edited by the instructor.

1 Massive Parallel Computation Algorithms (Part III)

In the last two lectures, we give massive parallel computation (MPC) algorithms for finding maximum
matching, minimum spanning trees, and vertex coloring. In this lecture, we will present an MPC algorithm
for finding the maximum independent set (MIS). We will prove the following theorem of finding an MIS in
O(log log n) rounds.

Theorem 1. With O(n) space per machine, there is an MPC algorithm that w.h.p. finds an MIS in
O (log log n) rounds.

1.1 Non-Parallel Algorithm

We will first discuss a non-parallel algorithm that finds an MIS in O(log n) rounds with high probability and
then migrate the idea to design an MPC algorithm for finding an MIS.

Luby’s algorithm for MIS

Until the graph becomes empty

1. On every remaining vertex v, draw a real xv ∼ Uniform[0, 1] independently.

2. Any vertex v whose rank xv is smaller than all of its remaining neighbors joins the independent set.
We then remove v and all of its neighbors from the graph.

The result from Luby is that the algorithm terminates in O(log n) rounds with high probability as shown in
the following.

Theorem 2. The above algorithm terminates in O(log n) rounds with probability 1− 1
n100 .

Remark. There are graphs on which Luby’s algorithm does require Ω (log n) rounds with high probability.

1.2 MPC algorithm for finding MIS

We will see next that there is a log log n round MPC algorithm. Consider the following two procedures.

GreedyMIS(G, π): Iterate over the vertices in the order of π and greedily add any vertex possible to the
independent set.

1



RandomGreedyMIS(G):

1. Draw a random permutation π from the set of all permutation.

2. Return GreedyMIS(G, π).

With the above procedures, we present the MPC implementation of RandomGreedyMIS.

MPC-RandomGreedyMIS(G):

1. Draw a random permutation π from the set of all permutation.

2. Let l = O(log log n)

3. For i = 1, . . . , l do:

• Let Vi be the subset of V including the first
√
n

∆ vertices.

• Find a MIS on the subset Vi and remove the vertices in Vi and the neighbors of Vi.

4. Return the MIS which is MIS(V1) ∪ · · · ∪MIS(Vl).

Next, we will prove that the above MPC algorithm finds an MIS with high probability. We will base the
proof on the following two lemmas.

Lemma 3. Let G be a graph of maximum degree ∆ >> log n and let V ′ be a random subset of V including
ever vertex independently with probability 1√

∆
. Then the number of edges in G[V ′] is at most O(n) w.h.p.

Proof. Take a vertex v and let d′v denotes the number of neighbors of v in V ′. Then

E [d′v] = dG(v)
1√
∆

≤
√
∆.

Applying the Chernoff bound

Pr

[
d′v ≥

√
∆+

√
6
√
∆ log n

]
≤ exp

(
−6

√
∆ log n

3
√
∆

)

≤ 1

n2
.

With high probability, for all v ∈ V ,

d′v ≤
√
∆+O

(
∆1/4

√
log n

)
≤ O

(√
∆
)
.

Moreover, w.h.p., we sample at most O
(

n√
∆

)
vertices in V ′. Thus the graph G[V ′] has O

(√
∆
)
×O

(
n√
∆

)
=

O (n) edges w.h.p.

This lemma indicates that we can put the subgraph G[V ′] into one machine. The following lemma states
that we can decay the maximum degree by using the procedure.

Lemma 4 (Sparsification Lemma). Let π be any arbitrary permutation over the vertex set V of a graph G.
Let V ′ includes every vertex in V independently with probability p. Let I be the output of GreedyMIS(G[V ′], π).
Let H be the graph obtained by removing I and every vertex adjacent to I from G. Then H has maximimum

degree at most O
(

logn
P

)
wit probability 1− 1

n2 .

2



We first give an intuition to prove the Sparsification Lemma with a wrong proof.

Wrong proof. If dG(v) < 100 logn
p then we are done. However, if dG(v) ≥ 100 logn

p , the probability of

seeing at least one neighbor of v in V ′ is 1 − (1 − p)100 log(n)/p ≥ 1 − e−100 logn = 1 − 1
n100 . If v has less

than 100 logn
p remaining neighbors, we are done. Otherwise, one of these remaining neighbors must have

been sampled, which in that case it would join the independent set.

The above proof has not decoupled the probability of joining V ′ and I. Next, we present the formal proof
that computes the probability by interpreting the procedure in another way.

Proof. Consider the following equivalent construction of I that reveals the subsample V ′ “on the fly”.

1. Set I = ∅.

2. Iterate over V in the order of π. Upon visiting a vertex v,

• If v has any neighbor in I, continue to the next vertex.

• Else, we call v a potential vertex. Reveal whether v ∈ V ′, and if so add v to I.

We have an observation from the above procedure: Every vertex in H is a potential vertex.

Therefore, if a vertex v has degree d′v in H, then it must have at least d′v potential neighbors.

Take any vertex v. If we see more than 10 logn
p potential neighbors of v throughout the construction of

I, then w.h.p. v ̸∈ H. This holds because every time that we see a potential neighbor of v, it joins the
independent set independently with probability p.

Thus Pr [v has no neighbor in I] ≤ (1− p)
100 log n

p < 1
n100 , which means that H has max degree O

(
logn
p

)
w.h.p.

Following the above two Lemmas, we can prove Theorem 1 that the MPC-RandomGreedyMIS algorithm
finds an MIS with high probability.

Consider the first iteration where we choose a vertex with a probability 1√
∆
. Then, suppose ∆ ≥ log10 n,

applying Lemma 4 yields that the remaining graph has maximum degree
√
∆ log n ≤ ∆

1
2+

1
10 ≤ ∆0.9. There-

fore, each iteration will reduce the maximum degree to its power of 0.9. After 100 log log∆ steps, the process
will terminate since the maximum degree will be O(1).

3


	1 Massive Parallel Computation Algorithms (Part III)
	1.1 Non-Parallel Algorithm
	1.2 MPC algorithm for finding MIS


