
CS 7880: Algorithms for Big Data (Fall’22) Northeastern University

Lecture 16
November 4th, 2020

Instructor: Soheil Behnezhad Scribe: Dongyue Li

Disclaimer: These notes have not been edited by the instructor.

1 Massive Parallel Computation Algorithms (Part II)

In the last lecture, we give the massive parallel computation (MPC) algorithms for maximum matching and
minimum spanning trees. In this lecture, we present a improved MPC algorithm for maximum spanning tree
and vertex coloring problems.

1.1 Recap

We first recap the definitions of massive parallel computation algorithms. Suppose there are M machines,
each with a space S. The input of a size N is divided among the M machines arbitrarily. The computation
happens in synchronized rounds. Within each round, each machine performas any computation on its local
data. In addition, each machine can send messages to other machines, as long as the total messages (sent
and received) by a single machines is less than S, where S is generally defined as N2−Ω(1). M is set to be
large enough to contain the input, i.e., M = N/S.

For graph problems, three space regimes are common:

• Super-linear regime: S = O
(
n1+ϵ

)
, where ϵ ∈ (0, 1).

• Near-linear regime: S = Õ(n).

• Sublinera space regime: S = O(nϵ).

In the last lecture, we show the following results.

Theorem 1. There is a randomized MPC algorithm that finds the maximal matching in O(1ϵ) rounds with
space O

(
n1+ϵ

)
.

Theorem 2. There is a randomized MPC algorithm that finds the minimum spanning tree in O(1ϵ) rounds
with space O

(
n1+ϵ

)
.

Based on the assumption that all edge weights are distinct, we use the following Lemma to obtain the
statement from Theorem 2.

Lemma 3. Let E′ ⊆ E . Then for any e ∈ E′\MST(E′), we have e ̸∈ MST(E).

Based on Lemma 3, one MPC algorithm is to find the minimum spanning tree (MST) by recursivly finding
MSTs on subsets of edges.

1

MST(E):

1. Partition the edge into subsets E1, . . . , El such that |Ei| = Θ
(
n1+ϵ

)
.

2. Send each Ei to different machine.

3. Return MST(MST(E1) ∪ · · · ∪MST(El)).

Running time. In every round, edges are pruned by a factor nϵ. After O(1ϵ) rounds, we are done.

1.2 Improved MPC Algorithm for Maximum Spanning Trees

In this lecture, we present an improved MPC algorithm that finds the MST in O(log 1
ϵ) rounds.

MST(E):

1. Randomly divide the vertices into k subsets V1, . . . , Vk.

2. For any i, j ∈ [k], send Gi,j := G[Vi ∪ Vj] to a different machine.

3. Return MST
(⋃

i ̸=j∈[k] MST(Gi,j)
)
.

First, we analyze the space complexity of Algorithm 1.2. We first analyze the number of edges in Gi,j . Each

vertex v belongs to V1 independently with probability 1
k . Moreover, for any v ∈ V1, E

[
degG1,2

(v)
]
≤ degG(v)

k .

By Chernoff bound, we have degGi,j
(v) ≤ Õ

(
degG(v)

k

)
with high probability.

Thus, in any Gi,j , the number of edges is∑
v∈V

Pr [v ∈ Vi] · degGi,j
(v) =

∑
v∈V

1

k
· degG(v)

k
= O

(m

k2

)
.

with high probability.

Therefore, to get m
k2 ≤ n1+ϵ, it suffices to set k =

√
m

n1+ϵ . Suppose m = n1+c, then k = n
c−ϵ
2 .

Theorem 4. In the super-linear regime there is an MST algorithm that solves the problem in O
(
log 1

ϵ

)
rounds.

Proof. For any Gi,j , we return O
(
n
k

)
edges. Overall, we have

(
k
2

)
· O

(
n
k

)
= O (nk) = O

(
n1+c/2−ϵ/2

)
edges

after recursion. After O
(
log 1

ϵ

)
rounds, we will have at most O

(
n1+ϵ

)
edges. Therefore, Algorithm 1.2 solves

the problem in O
(
log 1

ϵ

)
rounds.

Corollary 5. In the linear regime, there is an MST algorithm that takes O (log log n) rounds.

This results directly follows the runtime for super-linear regime. Since n = n1+ 1
log n , the MST algorithm in

the linear regime takes O(log ε) = O(log log n) rounds.

1.3 MPC Algorithm for Vertex Coloring

Next, we present MPC algorithms for vertex coloring.

Definition 6. Given a graph G = (V,E), a k-vertex coloring is an assignment C of {1, . . . , k} to V such
that C(v) ̸= C(u) if (v, u) ∈ E.

2

One observation is that any graph of max deg ∆, can be vertex colored with ∆ + 1 colors. Parameterized
by ∆, this is the best bound.

Theorem 7 (AKC’19). There is an O
(
n log2 n

)
space MPC algorithm that finds a (∆+1)-coloring in O(1)

rounds.

Instead of proving Theorem 7, we prove a simplified Theorem that finds a (1+ ϵ)∆ -olorings for any constant
ϵ > 0:

Theorem 8. There is an Õ
(
n
ϵ

)
space MPC algorithm that finds a (1+ ϵ)∆-colorings for any constant ϵ > 0

in O(1) rounds.

The key idea behind the MPC algorithm to find vertex coloring is pallete sparsification. We define a pallete
in the following.

Definition 9. For any vertex v, let P (v) include any color c ∈ {1, . . . , (1 + ϵ)∆} independently w.p. logn
ϵ∆ .

We present a useful lemma in the following to prove Theorem .

Lemma 10. There is a linear in space (1 + ϵ)∆-coloring C of G s.t. for any vertex v, C(v) ∈ P (v) w.h.p.

Next, we first show the proof of Theorem 1.3 by using Lemma 10.

Proof of Theorem 1.3. In one round, every vertex v samples colors for pallete P (v) (where each color from
{1, . . . , (1 + ϵ)∆} has probability of logn

ϵ∆ of being included), and we communicate the colors to all machines.

For any edge (u, v) if P (u) ∩ P (v) ̸= ∅, we send (u, v) to machine 1 to form subgraph G′ of G

Then find the coloring guaranteed by Lemma 10 in machine 1 on the subgraph G′of G sent to machine 1.

Claim 11. G′ has O
(

n log2 n
ϵ2

)
edges w.h.p.

Proof. Take a vertex v and condition on P (v) and also that P (v) has size O
(

logn
ϵ

)
with high probability.

For any neighbor u of v in G, we have

Pr [P (u) ∩ P (v) ̸= ∅ | P (v)] ≤
∑

c∈P (v)

10 log n

ϵ∆

= |P (v)| 10 log n
ϵ∆

= O

(
log n

ϵ

)
10 log n

ϵ∆
.

Therefore, (u, v) ∈ G′ with probability O
(

log2 n
ϵ2∆

)
. Then, we can have the following

E [degG′(v)] = degG(v)O

(
log2 n

ϵ2∆

)
≤ ∆O

(
log2 n

ϵ2∆

)
= O

(
log2 n

ϵ2

)
.

By a Chernoff bound, we get degG′(v) = O
(

log2 n
ϵ2

)
w.p. 1− 1

n2 .

3

Then, by a union bound over all v, we have that all vertices have degree O
(

log2 n
ϵ2

)
in G′ w.p. 1 − 1

n .

Therefore, G′ has at most n ·∆(G′) = O
(

n log2 n
ϵ2

)
edges.

Finally, we show the proof of Lemma 10.

Proof of Lemma 10. Consider the process that goes over the vertices one by one in an arbitrary order. Upon
visiting vertex v, we reveal the colors of v in P (v) one by one. The first color that is not assigned to any
neighbor of v is assigned to v. We claim that this finds a valid coloring w.h.p.

Since we have (1+ ϵ)∆ colors, for any vertex v, there are at least ϵ∆ colors not used by any neighbor so far.
Every time that we reveal the next color of P (v), we hit one of these ϵ∆ colors w.p. ≥ ϵ∆

(1+ϵ)∆ ≥ ϵ/2.

Therefore, the probability that we do not sample any “good” color after 10 logn
ϵ trials is (1 − ϵ/2)

10 log n
ϵ ≤

e−5 logn ≤ 1
n5 .

By a union bound over n vertices, any vertex has a “good” color in its pallete w.p. 1− 1/n4.

4

	1 Massive Parallel Computation Algorithms (Part II)
	1.1 Recap
	1.2 Improved MPC Algorithm for Maximum Spanning Trees
	1.3 MPC Algorithm for Vertex Coloring

