Dynamic Programming

d. Longest Common Subsequence



Common Subsequences

* Given a string x € X™ a subsequence is any string
obtained by deleting a subset of the symbols

¥ e C uUu r a n C e

* Given two strings x € ",y € £™, a common
subsequence is a subsequence of both x and y

¥ e € uUu r a n C e

¥ e C€C u r r e n C e



Longest Common Subsequence (LCS)

* Input: Two strings x € X",y € £™

* Output: The longest common subsequence of x
and y



Writing the Recurrence

Recurrence:
o 1+LCS(i—1,j—1) itx; =y
LCS(i,j) = {max{LCS(i —1,7),LCS(i,j — 1)} ifx; #y;

Base Cases:

LCS(i,0) = 0,LCS(0,j) =0



Solving the Recurrence: Bottom-Up

// All inputs are global vars
FindOPT (n,m) :
M[i,0] <O, M[0,]J] <O

for (i= 1,..,n):
for (J =1,...,m):
if (x; = yy):
M[i,j] «< 1 + M[i-1,3j-1]
else:
M[i,]] « max{M[i-1,3j], M[i,]-1]}

return M[n,m]



Ask the Audience

X = peat Compute LCS(i,j) for
v = leapt each subproblem




Ask the Audience

x = peat Compute LCS(i,j) for
v = leapt each subproblem




Finding the Solution

// All inputs are global vars
FindILCS (1, ) :
if (i = 0 or jJ = 0)
return "
if (x; = yy):
return FindLCS(i-1,3j-1)+ x;
else:
if (M[i-1,3] > M[i,j-1]1)
return FindLCS (i-1,j)
else:
return FindLCS(i,j-1)

return M[n,m]



Dynamic Programming

e. Longest Increasing Subsequence



Longest Increasing Subsequence (LIS)

* Input: a sequence of numbers x4, ..., x,

sequence

4 0 8 2 9 31 2 3 7 4 6 3



Longest Increasing Subsequence (LIS)

* Input: a sequence of numbers x4, ..., X,

sequence

4 0 8 2 9 3 1 2 3 7 4 6 3

increasing subsequence

* Increasing Subsequence:
indicesl <i; <i, << <n
such thatx; <x;, <--<x;,



Longest Increasing Subsequence (LIS)

* Input: a sequence of numbers x4, ..., X,

sequence

4 0 8 2 9 3 1 2 3 7 4 6 3

increasing subsequence

* OQutput: a longest increasing subsequence

sequence
4 0 8 2 9 3 1 2 3 7 4 6 3

longest increasing subsequence



Ask the Audience

* Find a longest increasing subsequence of

14 7 5 6 2 12



ldentifying the Subproblems

e Start by finding the value of the optimal solution:
* In this problem: length of the LIS




ldentifying the Subproblems

e Start by finding the value of the optimal solution:
* In this problem: length of the LIS

* What about defining LIS(j) to be the length of the
longest increasing subsequence between the first j
elements?



Writing the Recurrence

* Let LIS(j) be the length of the longest increasing
subsequence that ends with x;



Writing the Recurrence

* Let LIS(j) be the length of the longest increasing
subsequence that ends with x;

* Case i: the previous element is x;

6 7 14 5 12 8



Writing the Recurrence

* Let LIS(j) be the length of the longest increasing
subsequence that ends with x;

* Case i: the previous element is x;
* Some cases are invalid



Writing the Recurrence

* Let LIS(j) be the length of the longest increasing
subsequence that ends with x;

* Case i: the last two numbers are x; and x;

Recurrence:
LIS(I) - 1 t 1Si<jrglll’zli(i(xi<x]' LIS(l)

Base Case:

LIS(1) =1



Ask the Audience

* Fill out the values LIS(j) forj =1, ...,6

6 10 5 14 8 7

12345 6

1



Ask the Audience

Is LIS(n) the length of the optimal solution?



Solving the Recurrence: Bottom-Up

// All inputs are global vars
FindOPT (n) :
M[1l] <1

= 2
MOl =1+ jmax ML

return max M[j]
1<sj=<n



Solving the Recurrence: Bottom-Up
FindOPT (n) :
M[1l] <1

for (jJ = 2,..,n):

MOl =1+ jmax ML

return max M[j]
1<sj=<n

Running time:



Recovering the LIS

* Fill out the values LIS(j) forj =1, ...,6

6 10 5 14 8 7

TSR
1




Recovering the LIS

FindLIS (n) :
if (n=1)
return Xx;
j= argmax M]i]

1<i<n and xj<xp

return FindLIS(j) + {x,}



Summary

* Can compute a LIS in time 0(n?)

e Same algorithm works for longest non-decreasing,
longest decreasing, longest non-increasing, and more

* Dynamic Programming:
e Question: What is the final symbol in the LIS?
* Subproblems represent LIS with a specific final symbol
* The actual optimal value is not always in LIS(n)



