
Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack
d. Longest Common Subsequence

Common Subsequences

• Given a string ! ∈ Σ! a subsequence is any string
obtained by deleting a subset of the symbols

• Given two strings ! ∈ Σ! , % ∈ Σ", a common
subsequence is a subsequence of both ! and %

r e c u r a n c e

r e c u r r e n c e

r e c u r a n c e

Longest Common Subsequence (LCS)

• Input: Two strings ! ∈ Σ! , % ∈ Σ"
• Output: The longest common subsequence of !

and %

Writing the Recurrence

Recurrence:

LCS &, (= * 1 + LCS(& − 1, (− 1)
max LCS & − 1, (, LCS(&, (− 1)

Base Cases:
LCS &, 0 = 0, LCS 0, (= 0

if !! = #"
if !! ≠ #"

Solving the Recurrence: Bottom-Up

// All inputs are global vars
FindOPT(n,m):
 M[i,0]	←	0, M[0,j]	←	0

 for (i= 1,…,n):
 for (j = 1,…,m):
 if (xi = yj):
 M[i,j] ← 1 + M[i-1,j-1]
 else:
 M[i,j] ← max{M[i-1,j],M[i,j-1]}

 return M[n,m]

Ask the Audience
x = peat
y = leapt

Compute LCS(i,j) for
each subproblem

- l e a p t
- 0 0 0 0 0 0

p 0

e 0

a 0

t 0

j = 0 1 2 2 4 5

i = 0

1

2

3

4

Ask the Audience
x = peat
y = leapt

Compute LCS(i,j) for
each subproblem

- l e a p t
- 0 0 0 0 0 0

p 0 0 0 0 1 1

e 0 0 1 1 1 1

a 0 0 1 2 2 2

t 0 0 1 2 2 3

j = 0 1 2 2 4 5

i = 0

1

2

3

4

Finding the Solution

// All inputs are global vars
FindLCS(i,j):
 if (i = 0 or j = 0)
 return ””
 if (xi = yj):
 return FindLCS(i-1,j-1)+ xi
 else:
 if (M[i-1,j] > M[i,j-1])
 return FindLCS(i-1,j)
 else:
 return FindLCS(i,j-1)
 return M[n,m]

Dynamic Programming
a. Fibonacci Series
b. Weighted Interval Scheduling
c. Knapsack
d. Longest Common Subsequence
e. Longest Increasing Subsequence

Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers !6, … , !!

4 0 8 2 9 3 1 2 3 7 4 6 3
sequence

Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers !6, … , !!

• Increasing Subsequence:
indices 1 ≤)6 ≤)7 ≤ ⋯ ≤)8 ≤ +
such that !9! < !9" < ⋯ < !9#

4 0 8 2 9 3 1 2 3 7 4 6 3
sequence

increasing subsequence

Longest Increasing Subsequence (LIS)

• Input: a sequence of numbers !6, … , !!

• Output: a longest increasing subsequence

4 0 8 2 9 3 1 2 3 7 4 6 3

4 0 8 2 9 3 1 2 3 7 4 6 3

sequence

increasing subsequence

sequence

longest increasing subsequence

Ask the Audience

• Find a longest increasing subsequence of

14 7 5 6 2 12

Identifying the Subproblems

• Start by finding the value of the optimal solution:
• In this problem: length of the LIS

Identifying the Subproblems

• Start by finding the value of the optimal solution:
• In this problem: length of the LIS

• What about defining LIS 0 to be the length of the
longest increasing subsequence between the first 0
elements?

8 9 12 3 6 10

Writing the Recurrence

• Let LIS 0 be the length of the longest increasing
subsequence that ends with !:

8 9 12 3 6 10

Writing the Recurrence

• Let LIS 0 be the length of the longest increasing
subsequence that ends with !:

• Case 1: the previous element is	!9

6 7 14 5 12 8

Writing the Recurrence

• Let LIS 0 be the length of the longest increasing
subsequence that ends with !:

• Case 1: the previous element is	!9
• Some cases are invalid

6 7 14 5 12 8

Writing the Recurrence

• Let LIS 0 be the length of the longest increasing
subsequence that ends with !:
• Case 1: the last two numbers are !9 and !:

Recurrence:

Base Case:

LIS $ = 1 + max%&'()	+,-	.!(."
LIS +

LIS 1 = 1

Ask the Audience

• Fill out the values LIS 0 for 0 = 1,… , 6

6 10 5 14 8 7

j 1 2 3 4 5 6
LIS(j) 1

Ask the Audience

Is LIS + the length of the optimal solution?

Solving the Recurrence: Bottom-Up

// All inputs are global vars
FindOPT(n):
 M[1]	←	1

 for (j = 2,…,n):
 M j = 	1 + max!"#$%	'()	*!$*"

M[i]

 return max!"+",M[j]

Solving the Recurrence: Bottom-Up

FindOPT(n):
 M[1]	←	1

 for (j = 2,…,n):
 M j = 	1 + max!"#$%	'()	*!$*"

M[i]

 return max!"+",M[j]

Running time:

Recovering the LIS

• Fill out the values LIS 0 for 0 = 1,… , 6

6 10 5 14 8 7

j 1 2 3 4 5 6
LIS(j) 1 2 1 3 2 2

Recovering the LIS

FindLIS(n):
 if (n=1)
 return x!
 j= argmax

!"#$('()	*!$*#
M[i]

 return FindLIS(j) + {x(}

Summary

• Can compute a LIS in time 5 +7
• Same algorithm works for longest non-decreasing,

longest decreasing, longest non-increasing, and more

• Dynamic Programming:
• Question: What is the final symbol in the LIS?
• Subproblems represent LIS with a specific final symbol
• The actual optimal value is not always in LIS(n)

