
Graph Optimization
a. Shortest Paths

a. Dijkstra’s Algorithm
b. Bellman-Ford

b. Minimum Spanning Trees

 



Network Design

• Build a cheap, connected graph
• We are given
• a set of nodes ! = #!, … , #"
• a set of possible edges & ⊆ !×!
• a weight function on the edges )#

• Want to build a network to connect these locations
• Every #$, #% must be connected
• Must be as cheap as possible

• Many variants of network design



Minimum Spanning Trees (MST)

• Input: a weighted graph ! = #, %, &!
• Undirected, connected, weights may be negative
• All edge weights are distinct (makes life simpler)

• Output: a spanning tree ' of minimum cost
• A spanning tree of * is a subset of + ⊆ & of the edges 

such that !, + forms a tree (what’s a tree?                       )
• Cost of a spanning tree + is the sum of the edge weights
• Cost(T) =

• MST:

is

IF we
argmin Cost T

spanytreeT



Minimum Spanning Trees (MST)
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Connected Components 

• Connected component: a maximal subset of 
vertices which are all connected in G
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Cuts

• Cut: a subset of nodes !  Cutset: edges w/ 1 endpoint in cut
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Cut S         =  {4, 5, 8}
Cutset =  (5,6), (5,7), (3,4), (3,5), (7,8)

S

an edge ane is cut by S es are is intheoutset
definedbyS



Properties of MSTs

• Cut Property: Let ( be a cut.  Let ) be the minimum 
weight edge cut by (.  Then the MST '∗ contains )
• We call such an , a safe edge



Proof of Cut Property

• Cut Property: Let ( be a cut.  Let ) be the minimum 
weight edge cut by (.  Then the MST '∗ contains )

Proof by contradiction: 
Assume , is not in the MST. 
Adding it to the MST creates a 
cycle C with at least one other 
edge - in the cut set. Replacing - with , in this MST gives 
us a smaller spanning tree hence the contradiction.
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Why does " exist?

Why doesn’t replacing " with # create new cycle?

Proof of Cut Property
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Why does replacing " with #
keep the graph connected?

Proof of Cut Property
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Cycles

• Cycle: a set of edges *#, *$ , *$, *% , … , *& , *#

Cycle C  =  (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)
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Cycle Property

• Cycle Property: Let , be a cycle.  Let - be the 
maximum weight edge in ,.  Then the MST '∗ does 
not contain -.
• We call such an - a useless edge

C



Proof of Cycle Property

• Cycle Property: Let , be a cycle.  Let - be the max 
weight edge in ,.  The MST '∗ does not contain -.
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Proof of Cycle Property

• Cycle Property: Let , be a cycle.  Let - be the max 
weight edge in ,.  The MST '∗ does not contain -.

Proof by contradiction: 
Assume - is in the MST. 
Let S be one of the connected components we get by 
removing - from this MST. There is at least 
one other edge , from cycle C in cutset of S. Replacing - with ,
in this MST gives us a smaller spanning tree hence the 
contradiction.

! 

"∗
#

$

I



Ask the Audience

• Assume ! has distinct edge weights
• True/False?  If ) is the edge with the smallest 

weight, then ) is always in the MST '∗

• True/False?  If ) is the edge with the largest  
weight, then ) is never in the MST '∗

4 6

True Let S u Bythecutproperty e mustbelaytoMST
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MST Algorithms

• There are several useful MST algorithms
• Kruskal’s Algorithm: start with + = ∅, consider edges in 

ascending order, adding edges unless they create a cycle

• Prim’s Algorithm: start with some /, at each step add 
cheapest edge that grows the connected component

• Borůvka’s Algorithm: start with + = ∅, in each round 
add cheapest edge out of each connected component
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a. Dijkstra’s Algorithm
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Kruskal’s Algorithm

• Kruskal’s Informal
• Let + = ∅
• For each edge e in ascending order of weight:
• If adding , would decrease the number of connected 

components add , to +

• Correctness: every edge we add is safe and every 
edge we don’t add is useless

mlyn time

ed



Practice Kruskal’s Algorithm



Implemen;ng Kruskal’s Algorithm

• Union-Find: group items into components so that 
we can efficiently perform two opera(ons:
• Find(u): lookup which component contains u
• Union(u,v): merge connected components of u,v

• Naïve Union-Find:

• Can implement Union-Find so that
• Find takes 0 1 >me
• Any 2 Union opera>ons takes 0 2 log 2 >me
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Fast Union-Find
• Use an array for current component of each vertex and a 

linked list for items in each component, and keep size of 
each component (always union smaller into larger)

• 1. Largest component has size 
• 2. Every ?me an item changes component, its new 

component is the size of its old component
• 3. No item changed components more than ?mes
• Total +me:
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Fast Union-Find
• Use an array for current component of each vertex and a 

linked list for items in each component, and keep size of 
each component (always union smaller into larger)

• 1. Largest component has size 
• 2. Every ?me an item changes component, its new 

component is the size of its old component
• 3. No item changed components more than ?mes
• Total +me:
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Kruskal’s Algorithm (Running Time)

• Kruskal’s:
• Let + = ∅
• For each edge e in ascending order of weight:
• If adding , would decrease the number of connected 

components add , to + (“test e”)

• Time to sort:
• Time to test edges:
• Time to add edges:
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Prim’s Algorithm

• Prim Informal
• Let + = ∅
• Let / be some arbitrary node and 6 = /
• Repeat un>l 6 = !

• Find the cheapest edge ' = ), + cut by ,.  Add ' to - and 
add + to ,

• Correctness: every edge we add is safe and T is 
spanning & connected (S is always connected)



Prim’s Algorithm



Prac;ce Prim’s Algorithm
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Prim’s Algorithm

Prim(G=(V,E,w(E)))

T ← ∅
let Q be a priority queue storing V

value[v] ← ∞, last[v] ← ∅
value[s] ← 1 for some arbitrary 2

while (Q ≠ ∅):
u ← ExtractMin(Q) 
for each v in N[u]:

if v ∈ Q and w(u,v) < value[v]:
DecreaseKey(v,w(u,v))
last[v] ← u

if u != s:
add (u, last[u]) to T

return T

mlyd



Prim’s vs Kruskal’s

• Prim’s Algorithm:
• 0 7 log(9)
• Itera>vely builds one connected component
• Faster in prac>ce on dense graphs

• Kruskal’s Algorithm:
• 0 7 log(9)
• Maintains mul>ple connected components 

simultaneously
• Faster in prac>ce on sparse graphs

0 megan



Borůvka’s Algorithm

• Borůvka’s Algorithm (Informal)
Add ALL the safe edges and recurse. 

1 Everyiteration canbeimplemented in O m Iggy
27 f iterations isOlly n e eachstepdoubles size f smallestcomponent



Borůvka’s Algorithm


