
Graph Optimization
a. Shortest Paths

a. Dijkstra’s Algorithm
b. Bellman-Ford

b. Minimum Spanning Trees

Network Design

• Build a cheap, connected graph
• We are given
• a set of nodes ! = #!, … , #"
• a set of possible edges & ⊆ !×!
• a weight function on the edges)#

• Want to build a network to connect these locations
• Every #$, #% must be connected
• Must be as cheap as possible

• Many variants of network design

Minimum Spanning Trees (MST)

• Input: a weighted graph ! = #, %, &!
• Undirected, connected, weights may be negative
• All edge weights are distinct (makes life simpler)

• Output: a spanning tree ' of minimum cost
• A spanning tree of * is a subset of + ⊆ & of the edges

such that !, + forms a tree (what’s a tree?)
• Cost of a spanning tree + is the sum of the edge weights
• Cost(T) =

• MST:

is

IF we
argmin Cost T

spanytreeT

Minimum Spanning Trees (MST)

6 12
5

14

3

8

10

15

9

7

53

Connected Components

• Connected component: a maximal subset of
vertices which are all connected in G

2 1

3 4 5

Cuts

• Cut: a subset of nodes ! Cutset: edges w/ 1 endpoint in cut

1
3

8

2

6

7

4

5

Cut S = {4, 5, 8}
Cutset = (5,6), (5,7), (3,4), (3,5), (7,8)

S

an edge ane is cut by S es are is intheoutset
definedbyS

Properties of MSTs

• Cut Property: Let (be a cut. Let) be the minimum
weight edge cut by (. Then the MST '∗ contains)
• We call such an , a safe edge

Proof of Cut Property

• Cut Property: Let (be a cut. Let) be the minimum
weight edge cut by (. Then the MST '∗ contains)

Proof by contradiction:
Assume , is not in the MST.
Adding it to the MST creates a
cycle C with at least one other
edge - in the cut set. Replacing - with , in this MST gives
us a smaller spanning tree hence the contradiction.

!

"∗
#

$

cost T costa wetwe
we Wf

e

Why does " exist?

Why doesn’t replacing " with # create new cycle?

Proof of Cut Property
!

"∗
#

$

Why does replacing " with #
keep the graph connected?

Proof of Cut Property
!

"∗
#

$

Cycles

• Cycle: a set of edges *#, *$, *$, *% , … , *& , *#

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

1
3

8

2

6

7

4

5

Cycle Property

• Cycle Property: Let , be a cycle. Let - be the
maximum weight edge in ,. Then the MST '∗ does
not contain -.
• We call such an - a useless edge

C

Proof of Cycle Property

• Cycle Property: Let , be a cycle. Let - be the max
weight edge in ,. The MST '∗ does not contain -.

!

"∗
#

$

Proof of Cycle Property

• Cycle Property: Let , be a cycle. Let - be the max
weight edge in ,. The MST '∗ does not contain -.

Proof by contradiction:
Assume - is in the MST.
Let S be one of the connected components we get by
removing - from this MST. There is at least
one other edge , from cycle C in cutset of S. Replacing - with ,
in this MST gives us a smaller spanning tree hence the
contradiction.

!

"∗
#

$

I

Ask the Audience

• Assume ! has distinct edge weights
• True/False? If) is the edge with the smallest

weight, then) is always in the MST '∗

• True/False? If) is the edge with the largest
weight, then) is never in the MST '∗

4 6

True Let S u Bythecutproperty e mustbelaytoMST

False

MST Algorithms

• There are several useful MST algorithms
• Kruskal’s Algorithm: start with + = ∅, consider edges in

ascending order, adding edges unless they create a cycle

• Prim’s Algorithm: start with some /, at each step add
cheapest edge that grows the connected component

• Borůvka’s Algorithm: start with + = ∅, in each round
add cheapest edge out of each connected component

Graph Optimization
a. Shortest Paths

a. Dijkstra’s Algorithm
b. Bellman-Ford

b. Minimum Spanning Trees
a. Kruskal’s

Kruskal’s Algorithm

• Kruskal’s Informal
• Let + = ∅
• For each edge e in ascending order of weight:
• If adding , would decrease the number of connected

components add , to +

• Correctness: every edge we add is safe and every
edge we don’t add is useless

mlyn time

ed

Practice Kruskal’s Algorithm

Implemen;ng Kruskal’s Algorithm

• Union-Find: group items into components so that
we can efficiently perform two opera(ons:
• Find(u): lookup which component contains u
• Union(u,v): merge connected components of u,v

• Naïve Union-Find:

• Can implement Union-Find so that
• Find takes 0 1 >me
• Any 2 Union opera>ons takes 0 2 log 2 >me

Ccfvertex i

BE
sik taste A B

as Easiestsingeing
an nine

take an array mapping
each vertex u to theID f its CC

Find takesOLD time Uniontakes on time

This wouldimprove Kruskal'sRT too mlyn to m to nlyn
0cmlyn

Fast Union-Find
• Use an array for current component of each vertex and a

linked list for items in each component, and keep size of
each component (always union smaller into larger)

• 1. Largest component has size
• 2. Every ?me an item changes component, its new

component is the size of its old component
• 3. No item changed components more than ?mes
• Total +me:

aikniegementation

I IDI B 4
3

6TH

Fast Union-Find
• Use an array for current component of each vertex and a

linked list for items in each component, and keep size of
each component (always union smaller into larger)

• 1. Largest component has size
• 2. Every ?me an item changes component, its new

component is the size of its old component
• 3. No item changed components more than ?mes
• Total +me:

ittakes 1st time to change
thelabels in S to U

Becausethe f ventias an
o k

whichunion iscalledis E2K

twice

Regis
OCK lyk

Kruskal’s Algorithm (Running Time)

• Kruskal’s:
• Let + = ∅
• For each edge e in ascending order of weight:
• If adding , would decrease the number of connected

components add , to + (“test e”)

• Time to sort:
• Time to test edges:
• Time to add edges:

Graph Op(miza(on
a. Shortest Paths

a. Dijkstra’s Algorithm
b. Bellman-Ford

b. Minimum Spanning Trees
a. Kruskal’s Algorithm
b. Prim’s Algor>thm

Prim’s Algorithm

• Prim Informal
• Let + = ∅
• Let / be some arbitrary node and 6 = /
• Repeat un>l 6 = !

• Find the cheapest edge ' =), + cut by ,. Add ' to - and
add + to ,

• Correctness: every edge we add is safe and T is
spanning & connected (S is always connected)

Prim’s Algorithm

Prac;ce Prim’s Algorithm

1

2 6

3 5

4

7

8

6 12
5

14

3

8

10

15

9

7

Mymuumuu

Prim’s Algorithm

Prim(G=(V,E,w(E)))

T ← ∅
let Q be a priority queue storing V

value[v] ← ∞, last[v] ← ∅
value[s] ← 1 for some arbitrary 2

while (Q ≠ ∅):
u ← ExtractMin(Q)
for each v in N[u]:

if v ∈ Q and w(u,v) < value[v]:
DecreaseKey(v,w(u,v))
last[v] ← u

if u != s:
add (u, last[u]) to T

return T

mlyd

Prim’s vs Kruskal’s

• Prim’s Algorithm:
• 0 7 log(9)
• Itera>vely builds one connected component
• Faster in prac>ce on dense graphs

• Kruskal’s Algorithm:
• 0 7 log(9)
• Maintains mul>ple connected components

simultaneously
• Faster in prac>ce on sparse graphs

0 megan

Borůvka’s Algorithm

• Borůvka’s Algorithm (Informal)
Add ALL the safe edges and recurse.

1 Everyiteration canbeimplemented in O m Iggy
27 f iterations isOlly n e eachstepdoubles size f smallestcomponent

Borůvka’s Algorithm

