Graph Optimization

b. Minimum Spanning Trees

Network Design

* Build a cheap, connected graph

* We are given
* asetof nodesV = {vq,...,v,}
e aset of possible edges E € VXV
* a weight function on the edges w,

 Want to build a network to connect these locations

* Every v;, v; must be connected
* Must be as cheap as possible

* Many variants of network design

Minimum Spanning Trees (MST)

* Input: a weighted graph ¢ = (V, E, {w,})
* Undirected, connected, weights may be negative
» All edge weights are distinct (makes life simpler)

* Output: a spanning tree T of minimum cost

* Aspanning tree of G is a subset of T € E of the edges
such that (I/,T) forms a tree (what’s a tree? "° OJ“’QI)

Covwmec

* Cost of a spanning tree T is the sum of the edge weights

e Cost(T) = Z w,

Ce\
* MST: Mgwn COS+<T>

gp%a tvee T

Minimum Spanning Trees (MST)

Connected Components

* Connected component: a maximal subset of
vertices which are all connected in G

Cuts

* Cut: a subset of nodes S Cutset: edges w/ 1 endpoint in cut

{4, 5, 8}
(5,6), (5,7), (3,4), (3,5), (7,8)

O c%)e (4P s cil \oa S > (w® s fMLée cotsel

deford by S

Properties of MSTs

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

* We call such an e a safe edge

Proof of Cut Property cst/m) _ c@%@_wfﬂ_we

Wg<a/ﬁ

* Cut Property: Let S be a cut. Let e be the minimum
weight edge cut by S. Then the MST T™ contains e

Proof by contradiction:

Assume e is not in the MST.
Adding it to the MST creates a
cycle C with at least one other
edge f in the cut set. Replacing f with e in this MST gives
us a smaller spanning tree hence the contradiction.

Proof of Cut Property

Why does f exist?

Why doesn’t replacing f with e create new cycle?

Proof of Cut Property

Why does replacing f with e
keep the graph connected?

Cycles

* Cycle: a set of edges (v, V,), (V,, V3), ..., (Vy, V1)

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

Cycle Property

* Cycle Property: Let C be a cycle. Let f be the
maximum weight edge in C. Then the MST T™ does
not contain f.

* We call such an f a useless edge

Proof of Cycle Property

* Cycle Property: Let C be a cycle. Let f be the max
weight edge in C. The MST T™ does not contain f.

Proof of Cycle Property

* Cycle Property: Let C be a cycle. Let f be the max
weight edge in C. The MST T™ does not contain f.

Proof by contradiction:
Assume f is in the MST.

Let S be one of the connected components we get by r
removing f from this MST. There is at least

one other edge e from cycle Cin cutset of S. Replacing f with e
in this MIST gives us a smaller spanning tree hence the

contradiction. . / 3 0

e

Ask the Audience

* Assume G has dis(tin)ct edge weights
u,®

* True/False? If e is the edge with the smallest
weight, then e is always in the MST T™

Twe. Let S- Eu% ?)(j)zc cut M, €. s Mwauf VLQ/MST

* True/False? If e is the edge with the largest
weight, then e is never in the MST T™

ﬁafls&

MST Algorithms

* There are several useful MST algorithms

e Kruskal’s Algorithm: start with T = @, consider edges in
ascending order, adding edges unless they create a cycle

* Prim’s Algorithm: start with some s, at each step add
cheapest edge that grows the connected component

* Boruvka’s Algorithm: start with T = @, in each round
add cheapest edge out of each connected component

Graph Optimization

b. Minimum Spanning Trees
a. Kruskal’s

Kruskal’s Algorithm

e Kruskal’s Informal ’
e letT =0 \Mﬁﬁﬂ -
* For each edge e in ascending order of weight: &

* If adding e would decrease the number of connected
componentsaddeto T

* Correctness: every edge we add is safe and every
edge we don’t add is useless

T/

Practice Kruskal’s Algorithm

cc%fvw‘ext' A
Implementing Kruskal’s Algorithm (

Cc
Wéx\ © LLISIS| T Tl ! @

* Union-Find: group items into components so t
we can efficiently perform two operations:
* Find(u): lookup which component contains u

* Union(u,v): merge connected components of u,v , |
() g JS?_ QM’\" p Cdﬁ‘aﬁ«)\ mﬂ"z’(/m'dm ﬂ*‘d\“"éj

* Naive Union- Fmd.‘ifskwo (mﬁan\ +C)(m> Q(n >

- wim
Talce aL W\&J(j qug ea\j» ch U +o %
o ddces () e Uniom Aaltes oy dime .
* Can implement Union-Find so that
* Find takes O(1) time
* Any k Union operations takes O (k log k) time

Tis weld impove. [Crusicels €T q‘oO@VC%ﬂ)% +>O<m>+0<w%)
— O (Wt 7jn

© Im }& neuve \W"/‘m

Fast Union-Find "

* Use an array for current component of each vertex and a
linked list for items in each component, and keep size of
each component (always union smaller into larger)

| 6
Q@ﬁ Bl lallod % i {
i=lzy

Fast Union-Find

e Use an array for current component of each vertex and a
linked list for items in each component, and keep size of
each component (always union smaller into larger)

+ Aok S| dme To
. o f es (S]] dm CQW?&
U %QM fY\Q ﬂLo U

Becuse Mi H %, wahc) on

* 1. Largest component has size O(K) ahide wnion is callel. is < 2.

e 2. Every time an item changes component, its new
componentis +fuwce thesize of its old component

* 3. No item changed components more than O(% /<) times
* Total time: o©(k %@

Kruskal’s Algorithm (Running Time)

* Kruskal’s:
e letT =0
* For each edge e in ascending order of weight:

* If adding e would decrease the number of connected
componentsaddetoT (“teste”)

* Time to sort:
* Time to test edges:
* Time to add edges:

Graph Optimization

b. Minimum Spanning Trees

a. Kruskal’s Algorithm
b. Prim’s Algortithm

Prim’s Algorithm

* Prim Informal
e letT =0
* Let s be some arbitrary node and S = {s}
e Repeatuntil S =V

* Find the cheapest edge e = (u,v) cutby S. Add e to T and
addvtoS

* Correctness: every edge we add is safe and T is
spanning & connected (S is always connected)

Prim’s Algorithm

Practice Prim’s Algorithm

Prim’s Algorithm

Prim(G=(V,E,w(E)))

T <0
let Q be a priority queue storing V
value[v] < oo, last[v] < 0
value[s] < 0 for some arbitrary s
while (Q # Q) :
u <« ExtractMin (Q)
for each v in N[u]:
wﬁWQ if v € Q and w(u,v) < wvalue[v]:
O DecreaseKey (v,w(u,v))
last[v] < u
if u '= s:
add (u, last[u]) to T
return T

Prim’s vs Kruskal’s

* Prim’s Algorithm:

* O(mlog(n))
* |teratively builds one connected component
* Faster in practice on dense graphs

O(wm %% n)
* Kruskal’s Algorithm:
* O(mlog(n))

* Maintains multiple connected components
simultaneously

* Faster in practice on sparse graphs

Boruvka’s Algorithm

* Boruvka’s Algorithm (Informal)
Add ALL the safe edges and recurse.

18

26

) v ihesabon can be lanactel i OGn) hive

N 2
0 # L ieradon 15 009). o ek shep doudles nexf M:f”jvt

Boruvka’s Algorithm

BorUOVKA(V, E):
F=(V,0)
count «— COUNTANDLABEL(F)
while count > 1
ADDALLSAFEEDGES(E, F, count)
count <— COUNTANDLABEL(F)
return F

ADDALLSAFEEDGES(E, F, count):
for i « 1 to count

safe[i] « NULL
for each edge uv € E
if comp(u) # comp(v)

safe[comp(u)] « uv

safe[comp(v)] « uv
for i «< 1 to count
add safe[i] to F

if safe[comp(u)] = NuLL or w(uv) < w(safe[comp(u)])

if safe[comp(v)] = NuLL or w(uv) < w(safe[comp(Vv)])

