Dynamic Programming

f. Edit Distance



Edit Distance

* Input: two string A[1...n] and B[1...m]

* Output: minimum number of letter insertions,
letter deletions, and letter substitutions required to
transform one string into the other.

FOOD — MOOD — MON.D — MONED — MONEY



Edit Distance

* We can visualize this editing process by aligning the strings one
above the other:
* agap in the first word for each insertion
* agap in the second word for each deletion
* columns with two different characters correspond to substitutions

FOOD — MOOD — MOND — MONED — MONEY

F OO D
M ONEY

A LGOR I T HM
AL T RUISTTIZC



Writing the Recurrence

e Let Edit(i, j) be the minimum number of edits to turn
A[1l...i] into B[1...j].

e Consider the last column of the visualization:

* Case 1: the last element in the top row is empty

* This is an insertion to the first string.
* In this case Edit(i,j) = Edit(i,j — 1) + 1.

ALGOR
ALTR J U




Writing the Recurrence

* Case 2: the last element in the bottom row is empty

* This is a deletion from the first string.
* In this case Edit(i,j) = Edit(i — 1,j) + 1.

ALGO J R
ALTRU




Writing the Recurrence

* Case 3: both rows have characters in the last column
 |If the last characters are the same, then
Edit(i,j) = Edit(i —1,j — 1)
* |If the last characters are different, then we need substitution:
Edit(i,j) = Edit(i —1,j — 1) + 1

ALGO I R ALGO J R
ALTR | U ALT IR




Writing the Recurrence

e Base Case:

. Edit(i,0) = i
» Edit(0,)) =]

Edit(i, j) = {

(

Edit(i,j—1)+1
Edit(i—1,j) +1

)

\Edit(i—1,j—1) +[Ali] # B[j]]J

if j =0
ifi=0

} otherwise




Compute Edit (i,j) for each subproblem of x=peat and y=Ileapt

* Base Case:
« Edit(i,0) =i
« Edit(0,j) =j

Edit(i, j) = 1

f

i ifj=0
j ifi=0

Edit(i,j—1)+1
min Edit(i—1,j)+1 otherwise
\

Edit(i—1,j—1) +[A[i] # B[j1]




EpiTDisTaANCE(A[1..m],B[1..n]):
forj<—Oton
Edit[0,j] < j

fori—1tom
Edit[i,0] « i
forj<—1ton
ins « Edit[i,j—1]+1
del — Edit[i—1,j]+1
if Ali] = B[j]
rep « Edit[i —1,j—1]
else
rep < Edit[i—1,j—1]+1

Edit[i, j] « min {ins,del,rep}

return Edit[m, n]

Yyvy

Ny




Dynamic Programming

g. Wrap Up



Dynamic Programming Recipe

* Recipe:
(1) identify a set of subproblems
(2) relate the subproblems via a recurrence

(3) find an efficient implementation of the
recurrence (top down or bottom up)

(4) reconstruct the solution from the DP table



Interval Scheduling

* Input: n intervals (s;, f;) each with value v,
* Assume intervalsaresortedso f1 < f, < - < fy,

* Output: a compatible schedule S maximizing the
total value of all intervals
* A schedule is a subset of intervals S € {1, ..., n}
* A schedule S is compatibleif noi,j € S overlap
* The total value of S is };cc v;



Interval Scheduling

Index




Subproblems

* Subproblems: Let O; be the optimal schedule using
only the intervals {1, ..., i}



Relating the Subproblems

* Subproblems: Let O; be the optimal schedule using
only the intervals {1, ..., i}

* Case 1: Final interval is not in 0; (i & 0;)
* Then O0; must be the optimal solution for {1, ...,i — 1}
*0;=0;4
* Case 2: Final interval isin O; (i € 0;)
* Assume intervals are sortedsothat f; < fo, < --- < f,

* Let p(i) be the largest j such that f; <'s;
* Then O; must be i + the optimal solution for {1, ..., p(i)}

* 0; ={i} + Op



A Recursive Formulation

* Subproblems: Let OPT (i) be the value of the optimal schedule
using only the intervals {1, ..., i}

* OPT(i) = max{OPT(i — 1),v; + OPT(p()))}

. OPT(0) = 0,0PT(1) = v,



Top-down Recipe
FindOpt (subproblem s) :

if (s is a base case):
1-Find the solution directly with no recursion
2-Return the solution.

if you already have the solution memorized:
1-Return the solution.

else:
1-Identify the subproblems needed for solving s.
2-Recursively call FindOpt on these subprobelms.
3-Solve s using these results.
4-Store the solution for s in an array. (memorize)
5-Return the solution.




Buttom-up Recipe

FindOpt () :
Let M be an array for storing the values of the
optimal solutions for all the subproblems.

Initialize M with the wvalue for the base cases.

Iterate over subproblems starting from the smallest:
1- Find the value for the subproblems using the
recursive formula and the value of the smaller
subproblems stored in M.
2-Store the value in array M.

Return the solution based on M.



Dynamic Programming

h. Quiz 1 Review



Question 1

2 pts

Consider the following algorithm.

Let M be a global array of size n+1

FindOPT(n):
If (n <= 1):
Return O
Else
M[n] = max{1+FindOPT(n-1), FindOPT(n-2)}
Return M[n]

Which of the following best describes the algorithm being used here?

This is a bottom up dynamic program running in O(n) time
This is not a dynamic program and takes exponential in n time.

This is a top down dynamic program running in O(n) time




Question 2 3 pts

This problem will test your understanding of dynamic programming by having you run through the algorithm for
weighted interval scheduling that we saw in class. Consider the following input for the interval scheduling
problem:

Interval 1: (0, 2),sos1 =0, f1 =2; valuevl =3
Interval 2: (1, 4),v2 =4

Interval 3: (3, 6),v3 =3

Interval 4: (5, 10), v4 = 6

Interval 5: (9, 12),v5 =3

What is the value of the optimal schedule where Interval 5 is not included? 10

What is the value of the optimal schedule where Interval 5 is included? 9




Question 3 2 pts

What is the solution to the following recurrence?

T(n)=T(nm-1)+4, T (1) =1

~ O(nlogn)




Question 4 3 pts

Which function grows fastest than the others?

fi(n)=vn, fo(n) = @)™, f5(n) = 99" fi (n) = 2° "

f4
f3
f1

2




